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Construction of size-consistent effective Hamiltonians for
systems with arbitrary Hilbert space

Arnd Hübsch, Matthias Vojta† and Klaus W Becker
Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany

Received 12 June 1999

Abstract. Effective Hamiltonians are usually constructed by using canonical transformations or
projection techniques. In contrast to this, we present a method for systems with arbitrary Hilbert
space based on the introduction of cumulants. Cumulants guarantee size consistency, a property
that is not always evident in other treatments. As a non-trivial example of use the derived method is
applied to the strong-coupling limit of the half-filled Hubbard model on a general lattice in arbitrary
spatial dimension for which the fourth-order expansion int/U of the effective Hamiltonian is
derived.

1. Introduction

The construction of effective Hamiltonians has proved very useful in investigating complicated
physical systems, since in this way the number of degrees of freedom can be reduced.
Conventional methods for such a construction are based on canonical transformations or the
projection technique. Often the construction is carried out in an approximate way, usually by
means of second-order perturbation theory. The transformation of the Hubbard model [1–3]
into thet–J model [4–6] is a well-known example.

The method of canonical transformations was introduced by Schrieffer and Wolff [7] to
transform the Anderson Hamiltonian [8] into the Kondo model [9]. This approach can be
sketched as follows. For a given Hamiltonian of the form

H = H0 + εH1 (1)

one searches for a generatorS of the transformation

H′ = e−εSHeεS (2)

under the condition that the new HamiltonianH′ does not contain terms linear inε. It can be
shown thatH1 = [S,H0] is the desired conditional equation for the generatorS. If this is solved
for S and inserted into (2), one obtains the second-order result forH′. Since this construction
involves commutations with the original HamiltonianH, the effective HamiltonianH′ scales
with the size of the system. The size consistency is important, since otherwise the results
for extensive quantities like ground-state energy or magnetization would prove inconsistent.
For a size-consistent calculation of higher-order terms, this simple method must be extended.
This can be done either by a step-by-step transformation [10] or by the method of continuous
unitary transformations [11]. However, these approaches are very formal and therefore not
transparent.
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In contrast, the conventional projection method [12] is based on a division of the Hilbert
space into two subspaces: theUP subspace in which one is interested and the complementary
UQ subspace to be projected out with the respective projection operatorsP andQ = 1− P .
Using the projection operatorsP andQ the Schr̈odinger equation is split into two parts, and
the states of theUQ subspace can be eliminated. Thus one obtains a Schrödinger-type equation
(H)eff

P − E|ψP 〉 = 0 for theUP subspace where|ψP 〉 denotes a state of theUP subspace. The
effective Hamiltonian is given by

Heff
P = PHP − PHQ

1

QHQ− EQHP. (3)

If the two subspaces interact only weakly, the states of the subspaces may be separated by a
typical energy1. In this case one selects the projection operatorsP andQ for a Hamiltonian
of the form (1) in such a way that the unperturbed HamiltonianH0 cannot provide transitions
between the subspaces. By replacingQHQ − E by 1, one obtains the second order inε
of the effective HamiltonianHeff

P . For a size-consistent computation of higher orders it is
not sufficient to expand equation (3) for smallQH1Q. In addition the energyE and the
state|ψP 〉 must be expanded consistently. The resulting equations for the separateε-orders
contain eigenvalue corrections of different orders. Therefore these equations must be solved
successively [13], and it is difficult to obtain closed expressions for higher orders.

In contrast to the usual projection method the cumulant approach [14–16] preserves size
consistency of extensive variables and is therefore a suitable tool for the construction of effective
Hamiltonians. A previously developed cumulant approach [21] can only be applied to systems
consisting of two interacting subsystems. This method is generalized here for arbitrary systems.

The paper is organized as follows. In section 2 the general cumulant approach is presented.
As a test for the derived method, in section 3 the effective Hamiltonian up to the fourth order in
t/U for the half-filled Hubbard model is calculated. The conclusions are presented in section 4.
Finally, a detailed discussion of generalized cumulants is given in the appendix.

2. Cumulant approach

The cumulant approach [14–16] has established itself as a powerful technique of many-
body theory, which makes the investigation of static and dynamical ground-state properties
of weakly and strongly correlated systems possible. It is known from classical statistical
mechanics [17,18] that size consistency is attained by expressing extensive quantities in terms
of cumulants, i.e. a cumulant expression for an extensive variable scales with the size of the
system independently of further approximations. In the standard diagram technique, size
consistency is ensured in any approximation by considering linked diagrams only [19]. But a
diagrammatic approach is usually based on Wick’s theorem [20] which is only applicable if the
dominant part of the Hamiltonian is a single-particle operator. Therefore, the diagrammatic
description is restricted to weakly correlated systems in which the electron–electron interaction
may be treated perturbatively.

In the following we propose a cumulant approach for the construction of effective
Hamiltonians for arbitrary systems. The method presented here is based on a perturbational
approach for the HamiltonianH = H0 + H1. The Hilbert space of the unperturbed Hamil-
tonianH0 is split into the low-energy partUP and the high-energy partUQ with the respective
projection operatorsP andQ = 1− P . The states of these two subspaces are assumed to be
separated by an energy difference. Now we want to construct an effective Hamiltonian for the
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UP space. For that purpose the expression for the effective Hamiltonian from reference [21]

Heff
a = −

1

β
ln

[
1

Zb
trb(e

−βH)
]

(4)

must be discussed first. Hereβ is the inverse temperature. In this case a system with two
subsets of degrees of freedoma andb was considered, i.e. the Hilbert space of the system is
a product space ofa andb. In equation (4),Zb and trb denote the partition function and the
trace of the subspaceb. Equation (4) has been derived from the partition function of the whole
system by separation of the trace. Therefore the recently introduced cumulant method for the
construction of effective Hamiltonians [21] is limited to systems on product spaces.

Now equation (4) is generalized by replacing the trace by a projection onto the relevant
UP subspace:

Heff
P = −

1

β
P ln(e−βH)PP (5)

where(· · ·)P denotesP(· · ·)P . This generalization is the key step in the present construction.
In equation (4) some of the degrees of freedom are integrated out by taking the trace in the
subspaceb. In analogy to this, insignificant degrees of freedom are removed in equation (5)
by aP -projection onto theUP subspace.

In order to transform equation (5) into a cumulant expression we introduce generalized
cumulants ( N∏

i=1

X
νi
i

)C
P

=
[
N∏
i=1

(
∂

∂ξi

)νn]
ln

( N∏
i=1

eξiXi
)
P

∣∣∣∣
ξi=0 ∀i

. (6)

For a detailed discussion of generalized cumulants see the appendix. We define the operator
function

f (λ) = P ln(e−λH)PP (7)

= (e−λH − 1)CP (8)

where equation (8) follows from the definition (7) by using series expansions. The expression
for the effective Hamiltonian can be rewritten as

Heff
P = −

1

β
f (β). (9)

For an actual calculation of the effective Hamiltonian as formulated here, it is often more
practical to start from the Laplace transformF (z) of the operator functionf (λ):

F(z) = −
∫ 0

−∞
ezλf (λ) dλ (10)

= − 1

z2

[
(H)CP +

(
H

1

z−HH
)C
P

]
. (11)

It can be shown that the second term of equation (11) does not contribute to the zeroth and the
first order ofH1 and therefore

F(z) = − 1

z2

[
(H)CP + z

(
H1

1

z−HH1
1

z−H0

)C
P

+ z

(
H0

1

z−HH1
1

z−H0
H1

1

z−H0

)C
P

]
.

(12)

That is,

F(z) = − 1

z2
(H)CP −

∞∑
n=2

([
1

z−H0
H1

]n 1

z−H0

)C
P

. (13)



8526 A Hübsch et al

Now we have obtained the sought-after perturbation series for the effective Hamiltonian and
the separate cumulant expansions corresponding to the perturbation orders inH1. Note that the
derived cumulant expression is exact and applicable at arbitrary temperature since no restrictive
assumptions were used. It can be shown that the previously developed cumulant method [21]
is a particular case of our formalism.

In the following we want to discuss a special situation of the method derived above which
also provides an interesting approximation. If all states of the relevantUP subspace have the
same eigenvalueEP of the unperturbed HamiltonianH0, the formalism can be simplified,
because in this case all cumulant expressions of the forms(· · ·H0)

C
P and(H0 · · ·)CP vanish, and

equation (11) can be rewritten as

F(z) = − 1

z2

[
(H)CP +

(
H1

1

z−HH1

)C
P

]
(14)

= − 1

z2

[
(H)CP +

(
H1

1

z− L0 −H1
H1

)C
P

]
. (15)

L0 is the Liouville operator with respect toH0 which is defined byL0A = [H0,A] for any
operatorsA. Equation (15) can be shown by transforming the second term of (14) into a series
of cumulant expressions and using

(H1HnH1)
C
P = (H1(L0 +H1)

nH1)
C
P . (16)

Note that equation (16) is proved by using the unit operator1 = e−ξH0eξH0, the identity
[14] eλHAe−λH0 = eλ(L0+H1)A and the definition of generalized cumulant expressions (6).
If we want to restrict consideration to zero temperature, the inverse Laplace transform of
equation (15) is easily performed and

Heff
P (β →∞) = (H0)

C
P + lim

z→0

(
H1

1

z− L0 −H1
H1

)C
P

(17)

is then obtained for the effective Hamiltonian. In the case whereH1 is small relative to
H0, it is straightforward to expand the effective Hamiltonian in a perturbation series. From
equation (17) it follows that

Heff
P (β →∞) = (H0)

C
P + lim

z→0

{ ∞∑
n=0

(
H1

[
1

z− L0
H1

]n)C
P

}
. (18)

As an alternative to perturbation theory, the evaluation of the effective Hamiltonian (15) can
also be done in the framework of the Mori–Zwanzig projection method [22,23] as was shown in
reference [21]. In the following we want to restrict consideration to the perturbation result (18).

3. Application to the half-filled Hubbard model

We now apply the method described above to derive an effective Hamiltonian for the strong-
coupling limit of the half-filled Hubbard model up to fourth order int/U . As it turned out
in the past, this derivation is highly non-trivial; recently Stein [37] has used it as a test for
Wegner’s method of continuous transformations [11]. Therefore it is reasonable to utilize the
cumulant approach presented here for re-examination of this expansion.

The Hamiltonian of the Hubbard model [1–3] on a general lattice in arbitrary spatial
dimension is given by

H = H0 +H1 (19)
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where

H0 = 1

2
U
∑
i,σ

ni,σ ni,−σ (20)

H1 = t
∑
i,j,σ

Di,j c
†
i,σ cj,σ . (21)

Note thatc†
i,σ andci,σ are fermion creation and annihilation operators for an electron with spin

σ on sitei. t is the hopping integral,U denotes the Coulomb repulsion between electrons on
the same site andni,σ = c†

i,σ ci,σ is the occupation-number operator for electrons with spinσ

on sitei. All information about the lattice is contained in the real hopping matrixDi,j . The
Hubbard model is one of the simplest models which describes the Coulomb interactionH0

and kinetic energyH1.
The expansion of the half-filled Hubbard model around the limit of strong coupling,

U � t , has a long history, because this limit makes several simplifications possible. Half-
filling means that the electron number equals the number of lattice sites. Before the presentation
of the Hubbard model, Anderson [24] showed that such a system is described by an effective
spin Hamiltonian, the so-called Heisenberg antiferromagnet [25]. This Hamiltonian is in
accordance with the second-order(t/U) expansion of the half-filled Hubbard model.

The calculation of higher orders is often based on the perturbation theory of Kato [26].
Thus Klein and Seitz [27–29] obtained the sixth-order spin interaction for the linear chain, and
Bulaevski’s result [30] of the fourth perturbation order for the half-filled Hubbard model in
more than one dimension was corrected by Takahashi [31].

Another approach for the derivation of effective Hamiltonians is based on unitary trans-
formations. Harris and Lange [32] used such a transformation to obtain the second-order
perturbation. A transformation for calculating higher orders was introduced by Chao, Spałek
and Olés [4,33,34]. Beyond second order their results are faulty, because in accordance with
equation (2) the transformed Hamiltonian is constructed using a low-order approximation
of the generatorS and so in higher orders terms appear which mix the different Hubbard
bands [35, 36]. A correct transformation algorithm for deriving a perturbation series of the
Hubbard Hamiltonian was proposed by MacDonald, Girvin and Yoshioka [10]. Thus they could
calculate the fourth order of the effective Hamiltonian. Stein [37] used Wegner’s method [11]
of continuous unitary transformations to obtain the fourth-order perturbation of the effective
Hamiltonian.

We now apply the method described in section 2 to construct an effective Hamiltonian for
the half-filled Hubbard model [1–3]. At half-filling all states without doubly occupied lattice
sites have the lowest eigenvalue of the unperturbed HamiltonianH0. These states form the
low-energy subspace with associated projection operatorP . This subspace is degenerate with
respect toH0. Terms with odd powers in the perturbationH1 vanish due to the particle–hole
symmetry. This is in accordance with a general theorem given by Takahashi [31]. Therefore
from equation (18)

Heff = lim
z→0

{ ∞∑
n=0

(
H1

[
1

z− L0
H1

]2n+1)C
P

}
(22)

follows for the effective Hamiltonian, where the terms in the sum correspond to the perturbation
orders. The first term of equation (18) vanishes because the eigenvalue of the unperturbed
HamiltonianH0 of the states without doubly occupied lattice sites is 0.

For the calculation of the cumulant expressions it is profitable to decomposeH1:

H1 =
4∑
k=1

hk L0hk = 1khk (23)
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into eigen-operatorshk of the Liouville operatorL0 with eigenvalues1k. The searched-for
decomposition

h1 = t
∑
i,j,σ

Di,j ĉ
†
i,σ ĉj,σ 11 = 0 (24)

h2 = t
∑
i,j,σ

Di,j ĉ
†
i,σ
ˆ̂cj,σ 12 = −U (25)

h3 = t
∑
i,j,σ

Di,j
ˆ̂c†

i,σ ĉj,σ 13 = U (26)

h4 = t
∑
i,j,σ

Di,j
ˆ̂c†

i,σ
ˆ̂cj,σ 14 = 0. (27)

can be derived by introduction of the Hubbard operators

ĉ
†
i,σ = c†

i,σ (1− ni,−σ ) (28)

ˆ̂c†

i,σ = c†
i,σ ni,−σ . (29)

Note thatĉ† describes transitions from empty to singly occupied sites, whereasˆ̂c†
describes

transitions from singly to doubly occupied sites.
The second perturbation order is given by the first term in the sum of equation (22). Using

the identity (
X

1

z− L0
h1 · · ·hN

)C
P

= 1

z− (11 + · · · +1N)
(Xh1 · · ·hN)CP (30)

which can be proved by series expansions [21] we obtain

Heff

∣∣
2nd order= lim

z→0

[
4∑
k=1

1

z−1k

(H1hk)
C
P

]
. (31)

One calculates the cumulant expression in accordance with the definition (6) by using series
expansions (for more details see the appendix and equation (A.6)). Due to the properties of
thehk, expressions of the form(hk)P vanish. Only the term withk = 3 contributes, so the
sum can be evaluated:

Heff

∣∣
2nd order= −

1

U
(H1H1)P . (32)

SinceH1 describes a hopping process, equation (32) has a clear interpretation. Due to the Pauli
principle, contributions only result from different spins on the sites involved in the process.
Time-reversed initial states can be treated commonly by a spin summation. Therefore only
two processes contribute to the second-order perturbation and one can write symbolically

Heff

∣∣
2nd order= −

1

U

 ↑ ↓↑ ↓ + ⇓ ⇑
↑ ↓

 (33)

for equation (32). The diagrams in equation (33) are to be interpreted as hopping processes
where the initial state is located above and the final state of the process is below. The arrows
with double lines⇑ or⇓ indicate spins which have been flipped.

Using creation and annihilation operators, equation (33) can be transformed into an
operator equation. Thereby the lattice site summations, the spin summation and the pre-
factors of the hopping processes in accordance with equation (21) have to be considered. The



Construction of size-consistent effective Hamiltonians 8529

signs of the diagrams result from the process execution and the fermionic anti-commutation
relations. From equation (33) it follows directly that

Heff

∣∣
2nd order= −

t2

U

∑
i,j,σ

Di,jDj,i

[
ni,σ nj,−σ + c†

i,σ ci,−σ cj,σ c
†
j,−σ

]
. (34)

Using the spin operators

Si = 1

2

∑
σ,σ ′

c
†
i,σσσ,σ ′ci,σ ′ (35)

equation (34) can be written as follows:

Heff

∣∣
2nd order= 2

t2

U

∑
i,j

Di,jDj,i

[
Si · Sj − 1

4

]
(36)

whereσσ,σ ′ denotes the vector of the Pauli spin matrices.
For the calculation of the fourth perturbation order int/U , the second term in the sum of

equation (22) has to be evaluated. The cumulant expression can be simplified again by using
equation (30):

Heff

∣∣
4th order= −

4∑
j,k,l,m=1

1

1k +1l +1m

1

1l +1m

1

1m

(hjhkhlhm)
C
P . (37)

The cumulant expression has to be calculated by using equation (A.3). Due to the properties
of thehk, terms of the form(hk)P vanish and therefore equation (37) can be transformed into

Heff

∣∣
4th order=

1

U3

[
(H1H1)P (H1H1)P − U

(
H1H1Q

1

H0
QH1H1

)
P

]
. (38)

Now the fourth order should be transformed to a spin Hamiltonian too. In accordance with
equation (20) all states have the eigenvalueaU of the unperturbed HamiltonianH0 wherea
denotes the number of doubly occupied lattice sites of this state. SinceH1 describes a hopping
process, equation (38) can be evaluated transparently. For this purpose, it is appropriate to
classify the contributing processes and to treat these classes separately.

Note that only connected diagrams contribute to the effective Hamiltonian. This fact
results from the effect of cumulant expressions and secures the size consistency. The processes
to be considered can be classified according to the number of sites involved. As an example,
the contribution of the processes with three sites involved to the effective Hamiltonian will be
calculated in the following. In analogy to this computation, the processes with two and four
sites involved can be considered too.

Figure 1 shows the processes with three sites involved which are possible in the case
of half-filling. The selected first hopping process does not influence the results due to the
lattice site summations. Note that the geometrical position of the sitesi, j , k is fixed by
the hopping matrixDi,j . In accordance with the number of doubly occupied sites after two
hopping processes, the processes can be divided into two groups. In the cases [a]–[d] and [e],
one notices no and one, respectively, doubly occupied sites. Therefore the processes [a]–[d]
contribute to the first term and [e]–[h] contribute to the second term of equation (38). This fact
influences the signs of the process diagrams.

The processes [a]–[d] and [e], [h], respectively, are equivalent to each other in each case
since their individual steps are analogous. On account of the Pauli principle, again contributions
only result for different spins on the sitesi, j . Since time-reversed initial states can be treated
commonly by a spin summation, only two initial states must be examined. The diagrams
contributing to the processes [a], [e], [f] and [g] are represented in figures 2, 3, 4 and 5. The
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Figure 1. Processes of the fourth-order perturbation with three lattice sites involved. The spin
labelling is dropped.

Figure 2. A schematic representation of the diagrams contributing to process [a] of figure 1.
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Figure 3. A schematic representation of the diagrams contributing to process [e] of figure 1.

Figure 4. A schematic representation of the diagrams contributing to process [f] of figure 1.

Figure 5. A schematic representation of the diagrams contributing to process [g] of figure 1.
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product of the pre-factorsDi,j in accordance with equation (21) is invariant with respect to
index exchange of the formj ↔ k. Therefore such exchange can also be practised in individual
diagrams. The diagrams contributing to the process [g] of figure 1 have a different pre-factor
and are marked therefore in figure 5 by asterisks. The pre-factor of these diagrams can be
transformed into the form for the other diagrams by an index exchange,i ↔ j .

Expression (38) for the contributionHeff

∣∣3sites
4th orderof the processes with three sites involved

to the effective Hamiltonian can be written symbolically by using the process classification
discussed and incidence:

Heff

∣∣∣∣3 sites

4th order

U3 = + 4 ↑ ↓ ↓
↑ ↓ ↓

+ 4 ⇓ ↓ ⇑
↑ ↓ ↓

+ 4 ⇑ ⇓ ↓
↓ ↑ ↓

+ 4 ↓ ⇓ ⇑
↓ ↑ ↓

− 2 ↑ ↓ ↓
↑ ↓ ↓ − 2 ⇓ ↓ ⇑

↑ ↓ ↓ − 2 ⇑ ⇓ ↓
↓ ↑ ↓ − 2 ↓ ⇓ ⇑

↓ ↑ ↓

− ↑ ↓ ↓
↑ ↓ ↓ − ⇓ ↓ ⇑

↑ ↓ ↓ − ⇑ ⇓ ↓
↓ ↑ ↓ − ↓ ↑ ↓

↓ ↑ ↓

− ↑ ↓ ↓
↑ ↓ ↓ − ⇓ ↓ ⇑

↑ ↓ ↓ − ⇑ ⇓ ↓
↓ ↑ ↓ − ↓ ↑ ↓

↓ ↑ ↓
. (39)

The diagrams of equation (39) are to be interpreted again as hopping processes. Equation (39)
can be summarized formally:

Heff

∣∣∣∣3 sites

4th order

= 2

U3

 ↓ ⇓ ⇑↓ ↑ ↓ − ↓ ↑ ↓
↓ ↑ ↓

 (40)

and transformed to an operator equation:

Heff

∣∣3 sites
4th order= −2

t4

U3

∑
i,j,k,σ

Di,jDj,iDi,kDk,i

[
ni,σ c

†
j,σ cj,−σ ck,σ c

†
k,−σ + ni,σ nj,−σ nk,σ

]
.

(41)

Thereby the lattice site summations, the spin summation and the pre-factors have to be
considered. The signs of the diagrams again result from the special process execution and
the fermionic anti-commutation relations. Equation (41) can be summarized as

Heff

∣∣3 sites
4th order= 2

t4

U3

∑
i,j,k

Di,jDj,iDi,kDk,i

[
Sj · Sk − 1

4

]
(42)

using spin operators (35).
If the processes with two and four sites involved are also treated in this form, all

contributions to the fourth-order perturbation are considered and up to fourth order one obtains
the effective Hamiltonian

Heff = 2
t2

U

∑
i,j

Di,jDj,i

[
Si · Sj − 1

4

]
+
t4

U3

[
− 8

∑
i,j

D2
i,jD

2
j,i

{
Si · Sj − 1

4

}
+ 2

∑
i,j,k

Di,jDj,iDi,kDk,i

{
Sj · Sk − 1

4

}
+

1

2

∑
i,j,k,l

Di,jDj,kDk,lDl,i

×
{

1

4
− Si · Sj − Si · Sk − Si · Sl − Sj · Sk − Sj · Sl − Sk · Sl
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+ 20(Si · Sj )(Sk · Sl) + 20(Si · Sl)(Sj · Sk)− 20(Si · Sk)(Sj · Sl)
}]
.

(43)

This result is valid for arbitrary lattices and dimensions since all such information is contained
in the hopping matrixDi,j . The derived fourth-order perturbation of the effective Hamiltonian
agrees with other results which have been obtained using canonical transformations [10, 37]
or the projection technique [31].

In the case of the linear chain with nearest-neighbour hopping, processes with four sites
involved do not contribute to the fourth-order perturbation. Therefore in this case equation (43)
coincides with the result of Klein and Seitz [27].

4. Conclusions

In this paper we have presented a cumulant approach for the construction of effective
Hamiltonians. The size consistency of the results is always guaranteed by the introduction of
generalized cumulant expressions. While a previous cumulant method [21] has been limited to
systems containing two interacting subsystems, the formalism presented here can be applied
to systems with arbitrary Hilbert space for any temperature.

We have applied the cumulant method presented to the half-filled Hubbard model on a
general lattice in arbitrary spatial dimension for which the fourth-order perturbation expansion
of the effective Hamiltonian was calculated. In the past the fourth-order perturbation was
controversial and, therefore, it can be considered as a reference problem for methods for the
construction of effective Hamiltonians. The discussion of the strong-coupling expansion for
the Hubbard model demonstrates the power of the cumulant approach derived; it enables a
transparent construction of size-consistent effective Hamiltonians for systems with arbitrary
Hilbert space. The derived fourth-order perturbation of the Hubbard model agrees with the
results obtained by other methods.
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Appendix. Generalized cumulants

The cumulant expressions defined by equation (6) are to be interpreted as a generalization of
cumulant expectation values [38, 39]. In equation (6), theXi are operators whose powers of
νi are to be considered in the cumulant expansion.P denotes a projector onto a subspace of
the system. Generalized cumulants are traced back to the definition (6), i.e. forming cumulant
expressions of operator functions is to be explained by means of power series. For computing
generalized cumulants, a function of non-commuting operators is to be differentiated in
accordance with equation (6). Therefore, these cumulant expressions must be calculated
with the help of series expansions.
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From equation (6) it follows by expanding the exponential function that( N∏
i=1

X
νi
i

)C
P

=
[
N∏
i=1

(
∂

∂ξi

)νi]

×
[
lnP + ln

{
1 +

∞∑
n1,...,nN=0

(n1,...,nN )6=(0,...,0)

ξ
n1
1

n1!
· · · ξ

nN
N

nN !
(X

n1
1 · · ·XnNN )P

}]∣∣∣∣
ξi=0 ∀i

(A.1)

where the properties of projection operators were utilized. The first addend of equation (A.1)
does not contribute since it is still to be differentiated. The residual logarithm has the form
ln(1 +x) and, therefore, can be expanded as follows:( N∏
i=1

X
νi
i

)C
P

=
[
N∏
i=1

(
∂

∂ξi

)νi][{ ∞∑
n1,...,nN=0

(n1,...,nN )6=(0,...,0)

ξ
n1
1

n1!
· · · ξ

nN
N

nN !
(X

n1
1 · · ·XnNN )P

}

− 1

2

{ ∞∑
n1,...,nN=0
m1,...,mN=0

(n1,...,nN )6=(0,...,0)
(m1,...,mN )6=(0,...,0)

ξ
(n1+m1)
1

n1!m1!
· · · ξ

(nN+mN)
N

nN !mN !
(X

n1
1 · · ·XnNN )P (Xm1

1 · · ·XmNN )P

}

+
1

3
{· · ·} + · · ·

]∣∣∣∣∣
ξi=0 ∀i

. (A.2)

If one differentiates the sums of equation (A.2), one obtains

(X
ν1
1 · · ·XνNN )CP = (Xν1

1 · · ·XνNN )P
− 1

2

∞∑
n1,...,nN=0
m1,...,mN=0

(n1,...,nN )6=(0,...,0)
(m1,...,mN )6=(0,...,0)

δ(ν1, n1 +m1) · · · δ(νN, nN +mN)
ν1!

n1!m1!
· · · νN !

nN !mN !

× (Xn1
1 · · ·XnNN )P (Xm1

1 · · ·XmNN )P + · · · . (A.3)

From equation (A.3) one can obtain special cumulant expressions. For example, one finds

(A)CP = (A)P (A.4)

(A2)CP = (A2)P − (A)2P (A.5)

(AB)CP = AB)P −
1

2
(A)P (B)P − 1

2
(B)P (A)P . (A.6)
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